
Benchmarking BGL, UPC,

Checkpoint/Restart

Future Technologies Group

Lawrence Berkeley National Laboratory

Brent Gorda

October 15th, 2003

C O M P U T A T I O N A L R E S E A R C H D I V I S I O N

http://ftg.lbl.gov
Bgorda at lbl.gov

LBNL Future Technologies

Outline

• HPC @ LBNL/NERSC

• FTG’s purpose

• Performance studies, UPC, Checkpoint/Restart

• Follow-up

http://ftg.lbl.gov
Bgorda at lbl.gov

LBNL

http://ftg.lbl.gov
Bgorda at lbl.gov

CRD

http://ftg.lbl.gov
Bgorda at lbl.gov

NERSC Production Center

DOE Office of Science flagship Computing Center

Supports open, unclassified, basic research

– ~2000 Users, ~400 Projects

• Main computational facility (Seaborg) consists of:

– 416 16-way Power 3+ nodes
– 6,656 CPUs – 6,080 for computation @ 1.5 Gflop/s each
– Peak Performance of 10 Teraflop/s
– 7.8 TB Memory, 44TB GPFS disk (+15TB local disk)

http://ftg.lbl.gov
Bgorda at lbl.gov

LBNL’s Future Technologies Group (FTG) is
focused on performance aspects of High

Performance Computing (HPC).

FTG’s focus is the 5+ year timeframe.

Future Technologies Group

10 Gf/s

Single Core
PWR5 Chip

MCM
(4

chips)

System
(512 Racks, 2048 Nodes)

MSP/Node
(2 MCMs)

Cabinet
(4 nodes)

40 Gf/s

80 Gf/s
320 Gf/s

164 Tf/s

http://ftg.lbl.gov
Bgorda at lbl.gov

FTG Activities: Architecture

FTG seeks to understand performance of
new architectures:

14.
5
m
m

2 0 . 0 m m

APEX

http://ftg.lbl.gov
Bgorda at lbl.gov

Modern Vector Evaluation

Principal Investigator: Lenny Oliker

• Study performance of SX6, X1, Earth Simulator

• Study of key factors of modern parallel vector systems:
runtime, scalability, programmability, portability, and
memory overhead while identifying potential bottlenecks

• microbenchmarks, kernels, and application codes

http://ftg.lbl.gov
Bgorda at lbl.gov

Performance Studies on BGL

Leverage current work:
– Micro benchmarks in communications,

memory access issues/patterns/conflicts

– Application kernels – glimpse at
performance expectations

– If able: select application codes for in-
depth capability-oriented study

¸Can BGL enable science for the Office of Science?¸Can BGL enable science for the Office of Science?

http://ftg.lbl.gov
Bgorda at lbl.gov

Applications of interest

• Astrophysics:
– MADCAP Microwave Anisotropy Dataset Computational

Analysis Package. Analyses cosmic microwave
background radiation datasets to extract the maximum
likelihood angular power spectrum. Julian Borrill LBNL

– CACTUS Direct evolution of Einstein's equations.
Involves a coupled set of non-linear hyperbolic, elliptic
equations with thousands of terms. John Shalf LBNL

• Climate:
– CCM3 Community Climate Model Michael Wehner LBNL

http://ftg.lbl.gov
Bgorda at lbl.gov

More …

Fusion
– GTC Gyrokinetic Toroidal Code. 3D particle-in-cell code

to study microturbulence in magnetic confinement fusion.
Stephane Ethier Princeton Plasma Physics Laboratory

– TLBE Thermal Lattice Boltzmann equation solver for
modeling turbulence and collisions in plasma. Jonathan
Carter LBNL

Material Science
– PARATEC PARAllel Total Energy Code. Electronic

structure code which performs ab-initio quantum-
mechanical total energy calculations. Andrew Canning
LBNL

Molecular Dynamics
– NAMD Object-oriented molecular dynamics code

designed for simulation of large biomolecular systems.
David Skinner LBNL

http://ftg.lbl.gov
Bgorda at lbl.gov

Berkeley UPC compiler

Principal Investigator: Kathy Yelick (UCB)
Joint project between LBNL and UC Berkeley

http://ftg.lbl.gov
Bgorda at lbl.gov

UPC language

• UPC is an explicitly parallel global address space
language with SPMD parallelism
– An extension of C

– Shared memory is partitioned by threads

– One-sided (bulk and fine-grained) communication through
reads/writes of shared variables

UPC has a “forall” construct for
distributing computation:

Ex: Vector Addition

shared int v1[N], v2[N], v3[N];

upc_forall (i=0; i < N; i++; &v3[i]) {

 v3[i] = v2[i] + v1[i];

}

http://ftg.lbl.gov
Bgorda at lbl.gov

Compiler Implementation

Preprocessed File

C front end

Whirl w/ shared types

Backend lowering

Whirl w/ runtime calls

Whirl2c

ANSI-compliant C Code

• Based on the Open64 compiler

• Source to source transformation

• Convert shared memory
 operations into runtime library
 calls

• Designed to incorporate existing
 optimization framework in open64

• Communicate with runtime via a
 standard API

http://ftg.lbl.gov
Bgorda at lbl.gov

Gasnet

TranslatorUPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independen
t

Goals: Portability and High-Performance

Open64 based

http://ftg.lbl.gov
Bgorda at lbl.gov

Single word transfer is key

Software send overhead for 8-byte messages over time.

Not improving much over time (even in absolute terms)

BGL

http://ftg.lbl.gov
Bgorda at lbl.gov

UPC on BGL

• Standard C compiler (optimizer good)

• Runtime support: GaSNet

• Low latency single word get/put
operations

¸UPC Compiler is Open Source
– V1.0 released early 2002

– Next release for SC03

– Strong BGL interest from UPC Team

¸UPC Compiler is Open Source
– V1.0 released early 2002

– Next release for SC03

– Strong BGL interest from UPC Team

http://ftg.lbl.gov
Bgorda at lbl.gov

Checkpoint-Restart for Linux

Principal Investigator: Paul Hargrove

– DOE Scalable systems software SciDAC
– Checkpoint/restart is a part of the larger

resource management picture

– System initiated
– Apps needn’t know (for the most part)

• No recompile necessary
• But: sockets, changing files, etc.

http://ftg.lbl.gov
Bgorda at lbl.gov

C/R Motivation

• System Level Checkpoint facility enables:
– Resource utilization: (NERSC T3D ~70%-90+%)

– Fault tolerance for long running applications

– System Maintenance / Upgrades

– “Livermore Model”
• Gang Scheduling – Moe Jette’s work

• Day vs. night use; debug vs long running

• Capability + capacity

http://ftg.lbl.gov
Bgorda at lbl.gov

State of C/R

• Linux Kernel 2.4 (RedHat)
• Kernel Module – no kernel source

modification
• LAM MPI
• Some details:

– Standard I/O working
– In process: pipes, special device files, full

process groups, and sessions
– Signals (and handlers) reinstated, files

reopened
• Visit LBL booth @ SC03
• Soon: Initial (open source) release

http://ftg.lbl.gov
Bgorda at lbl.gov

C/R on BlueGene/L

• Checkpoint:
– Coordination of compute & I/O nodes

– Save state from compute node / BLRTS

– Messages in flight: reliable delivery – just drop them?

– Interaction with rest of BG/L system: batch system

• Restart:
– I/O node: reinstate file pointers, reaquire locks, pid,

session ID, process group, etc.

– Compute nodes: recover memory, reestablish
communications end-points

¸Checkpoint restart is Open Source

– Initial release for SC03

– C/R on BGL shouldn’t be hard

¸Checkpoint restart is Open Source

– Initial release for SC03

– C/R on BGL shouldn’t be hard

http://ftg.lbl.gov
Bgorda at lbl.gov

Conclusion

• FTG is interested in whether
BlueGene/L is an appropriate
architecture for the Office of Science

• We have applicable projects and talent
to contribute to the LLNL/IBM effort

Thank you!

